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ABSTRA..

In this report we introduce some computational
techniques for trie analysis and design of digital
communication systems, pc:...;bly operating over a
nonlinear channeL (a typicdl example -Is a digital
satellite system, with the transponder amplifier
working at or near saturation for better efficiency).
We first consider evaluation of error probabilities
when the disturbances are only incompletely known.
Then we describe a combined simulation-and-analytical
technique to evalua~te the power density spectrum of a
digital 3ignal passed through a nonlinear channel.
Next, we consider the oroblem of' designing and
evaluating the performanoE' o!' the %'ptimum linear
receiving filter for transmission over a nonlinear
channel. Finally, we consider IUngerboeck codes: a new
class of multidimensiona!l'odes is introduced, its
applications discussed, and an importan t property
concerning their power spectral densities K.shown.
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1.0 INTRODUCTION

In the past few years, considerable attention has

been devoted to evaluating and optimizing the

performance of commercial digital communication

systems. Several studies have been devoted to the

performance improvement that can be achieved through a

more sophisticated design, and the mathematical level

of these studies is growing with the complexity of

these systems. Thus, the evaluation of their

performance becomes an increasingly more demanding

task.

The aim of this report is to introduce some new

techniques for the analysis and design of digital

communication systems. The emphasis here is placed on

the computational algorithms that avoid resorting to

simulation techniques, which might be either

prohibitively expensive, or not completely satisfactory

in terms of accuracy.

Thee digital communication systems that can be

studied using the techniques described in the following

are: high-rate transmission systems with limited

bandwidth; satellite and microwave radio-relay links

with nonlinearities; multi-path and fading

. .• . . . . . . . . . . . . . . .., +. . . . . . .



transmission systems. The common feature of all these

systems, as we shall see in more detail in Section 3,

is that they can often be modeled as follows. At the

receiver front-end of the system there is a desired

signal component disturbed by an additive noise term.

Under the assumption that the noiseless portion of the

channel has a finite memory (i.e., the received signal

at any given time instant does not depend on the

infinite past of the transmitted signal) the number of

waveforms that can be observed, before the addition of

noise, in any time interval of finite duration is

finite.

Appendix A includes an overview of some of the

techniques for performance evaluation of communication

systems. The remainder of this report is devoted to a

detailed analysis of some of the techniques that have

been studied under this Contract. S

40
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2.6 EVALUATION OF ERROR PROBABILITIES

In recent years, there has been an increasing

demand for the analysis of digital communication

systems, partly due to the availability of large

numbers of novel digital signal processing devices and

partly due to certain attractive features of digital

systems, as for instance the fact that digital signals

are more amenable to enciphering and deciphering than

analog signals for secure communication purposes.

Performance evaluation of these systems is generally

based on the average error probability criterion.
S

However, as digital communication systems become more

sophisticated, it turns out that many of the known

analytical and simulation techniques available for the

computation of error probability are either not

applicable or prohibitively expensive. This is for

example the case of digital communication systems such

as: systems operating on a nonlinear bandlimited 0

channel; satellfte systems operating in a channelized

environment and a nonlinear transponder;

spread-spectrum multiple access systems; microwave ,

systems with cochannel interferences. Despite the

seemingly diverse nature of these systems, a unifying

feature behind all of them is that at their receiver

5".
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output there is a desired signal component disturbed by

an interference term plus noise. Let the interference

term be denoted by X. Then, the error probability for

all these systems can be expressed as an expectation of

a suitable known function with respect to the random

variable X. Usually, this expectation cannot be

evaluated directly, either because the statistics of X

are not known or because its computation would take too

long. Thus, various bounding and approximation

techniques have been considered.[1-19]

Basically, these techniques use a set of moments

of the random variable X. Ref. [33] includes which is

probably the most comprehensive approach to this

problem. It describes a class of upper and lower error

bounds that can be evaluated with modest computational 5

effort, and can be very tight, particularly when a

large number of moments can be evaluated with

sufficient accuracy. These bounds can use an arbitrary S

number of moments-of the random interference, and are

based on Krein-Nudel'man theory [2u-213. They provide

the tightest possible bounds based on a given moment

information, and generalize several previously derived

theories.

o4
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In many situations, however, use of moment

bounding techniques cannot be directly applied, either

because even the momens cannot be evaluated exactly or

because the additive noise does not have a known

probability density function. We consider separately

these two situations.

2.1 Probability Of Error For Digital Systems With

Inaccurately Known Interference

In this section we extend the moment bound theory

to the computation of error probabilities to a

situation in which the moments of the interference are

known only within a given accuracy.

The model assumed for the analysis is the

following: consider a digital communication system

where the output decision random variable at each

sampling instant is given by

(2.1) R = ah + X + V,

where a is the input information symbol taking on

values in a finite set, h is a constant, 1) is an

arbitrary random noise with known cumulative -0

distribution function, and X is the random

7 0



interference, which is only known through a set of

intervals in which its moments lie.

A situation like this can occur in several

instances. For example, the exact statistics of the

interference may not be known, and only estimates of

the first moments may be available. Another example

arises when X represents the intersymbol interference

generated by a channel impulse response whose samples

are known only in a certain interval. This may occur

because those samples have been measured with finite

accuracy, or because we want to estimate the error

probability for a class of channel impulse responses.

The solution to this problem can be obtained using

a theory developed by Krein and Nudel'man in 6
conjunction with the so-called "Chebyshev-Markov

problem with moments in a parallelepiped"[21]. This

theory deals with the evaluation of upper and lower

bounds of the integral

f
( Z ._) : f G (x )d P ( ×)

O"O

where G(.) is a known function, and P(.) is the

cumulative distribution function of a random variable

whose first n moments are approximately known.

8 ."0



An outline of the theory of moment bounds with

moments in a parallelepiped, as well as the derivation

of computational techniques for its solution, are

included in Appendix B.

2.2 Probability 'T" Error For Disturbances Known Only

Through Their Moments

Another case of interest arises when a signal of

known statistics is perturbed by interference and

noise, both of whom are known only through their

moments. In this case the situation is the following:

the observed signal is

k z ah + X
"

where a is a random variable representing the useful

signal and whose probability density function is known;

X is a random variable representing the disturbance,

and whose first -n moments are known. We want to

evaluate the probability that R crosses a given

threshold t, i.e., the quantity

(2.4) G (t) Prob[R>t

R °.



are taken in each waveforms, 2 complex values must be

stored, and 1624 256-point Fourier transforms must be

evaluated.

For this reason, a particular attention has been

devoted to the computational shortcuts that can be

devised to reduce the computational complexity and/or

the storage requirement of the algorithm. Symmetries

arising in the signal set have been taken into account, 0

thus reducing the dimensionality of the signal set by a

factor of M in most cases of practical importance.

Moreover, the particular structure of the matrix P has

been exploited, resulting in an iterative algorithm for

the computation of the matrix A(f) in equation (3.17).

The resulting computer algorithm can compute the S

power spectrum of a digital signal with M up to 4, and

a memory L up to 5, in a reasonable time. An example

of the results that can be obtained by using this 0

program is reported in Fig.2.

0
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In conclusion, the computation of the power

spectrum can be performed through the following steps:

1. Determine the waveforms that are available at

the channel output, and their Fourier

transforms (use FFT, typically). Arrange them

as the components of the vectors Qk(f).

2. Compute the quantities c (f) , c (f), Co(f),

and t(f) from eqs.(3.11)-(3.15)

0

3. Compute the power density spectrum using

(3.16)-(3.18).

Although all these steps are computationally

straightforward, Step 1 may put a considerable burden

in terms of computer time and storage. In fact, if L

denotes the channel memory, and M the source alphabet

size, i.e., the number of different source symbols, the

number of waveforms to be stored is ML i . Moreover,

each waveform must be represented with an adequate

number of samples, and its Fourier transform must be

taken. Thus, for example, if L=4, M=4, and 256 samples

.022-,



The third quantity is the average amplitude

spectrum of the waveforms available from the channel:

(3.14) 'M(f) = W c2(4 ) .

Finally, the fourth quantity of interest is the

average energy spectrum of the waveforms available at

the channel output:

M

(3.15) c (f)f (F
kni

The continuous part and the discrete part of the

power density spectrum of the signal y(t) are then

given by:

(3.16) + Z)=-[co({")-I,()I'J+ *r[C,(,)A(O (4")]

and

(3.17) -L 8(- PUT)

where

L 9-
(3.18) A() P P e

21
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we evaluate four quantities that play the fundamental

role in the expression of the power spectral density we

are looking for. The first is the average value, taken

over the source symbols, of the vectors Q (f):

M(3.11) c2 f M k -
k-i

The i-th component of c (f) is then the average Fourier

transform of the waveforms available to the channel

output when the channel is in state i.

The second quantity is the vector c1 (f) whose j-th
@

component is the average Fourier transform of the

waveforms that, when output by the modulator, force it

to the state j. We have

M.

(3.12) cl(f) M kkfDE k

k4

where

(3.13) D diag [wlW 2,...]

and [EkJi :1 if the source symbol Ak takes the channel

from state i to state j, and zero elsewhere.

2u

• . . . .- --..-. -.- •.. -i. • - . . . i - " : .. .. . - .. - . ... - 0



We are now in a position to derive the power

density spectrum of the digital signal (3.1). Only the -

final results will be given, as the details can be

found in the book [25].

Let us denote by

(3.8) w i = Prob{rn i}

the stationary state probabilities of the Markov chain,

i.e., the components of the unique probability vector w

such that

(3.9) w P w

Denote then by Q (f) the row vector whose entries are

the Fourier transforms of the waveforms q(t;.,.), -

according to the following rule: the i-th component of

the vector Q (f) is the transform of q(t;Aki). That

is, Qk(f) includes the Fourier transforms of the

waveforms corresponding to the source symbol Ak, for

the different channel states. Letting also

(3.1u) Pk = Prob{a -Ak} , =

19
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As one can see, from state (xyz) the shift

register can move only to state (wxy), with probability

p if w=6, and p if w:2.

Consider then the m-step transition probabilities.

These are the elements of the matrix P . As the

channel state depends on L symbols, and these are

assumed to be statistically independent, the state

CT;,,~ m>,L, is independent of the state ( n , so that we

have

P [ (AJ , Aj) o, (A1 ,, AlL))

(3.6) L

TT ta Aj ], r

Thus, :.L =PLi=..., and P' has identical rows. We

can write

(3.7) P P

which shows, in particular, that the channel state
0

sequence (Tr,) is a fully regular Markov chain, i.e.,

all eigenvalues of the transition probability matrix P

having unit magnitude are identically 1, and 1 is a

simple eigenvalue.

18
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p.,. is given by

p Pto (AjI ,..AjL)I .l(Ai, .. AL)

where Sjdenotes the Kronecker symbol C 81==1, and

As an example, assume M=2, A =0, A =1, and L=3.

The noiseless channel has eight states, whose

lexicographically ordered set is

transition probability matrix of the corresponding

Markov chain is

(0001 (001) (0101 (Oh)l (100) (001 (4101 WAif
PO 0 0 0 0 0 0 (000
PO 0 0 0 m 0 0 0 (.001
o0 p 0 0 0 P1  0 0 W0WI

Pm 0 0~ 0 0 p,0 0 (011)
0 0~ PaB 0 0 0 0 (100I
o 0 PO 0 0 0 p1 0 (10)
o 0 0 ?. 0 0 0 P, (110)

(3-) L0 0 0 PO 0 0 0 *Pj (111)

17



I

channel states, which forms a Markov chain. If each of

the symbols a can take on M values, the states can

L
take on M values.

To derive the transition matrix of the Markov

chain of the channel states, we shall first introduce a

suitable ordering for the values of (T. This can be

done in a rather natural way by firstly ordering the

elements of the set [A4,Aa,...,AM I of the M values

taken on by the an (a simple way of doing that is to

stipulate that Ai precedes Aj if and only if i<j), and

then inducing the f,.. wirng "lexicographical" ordering

among the L-tuples (Aj .Aj, .. Aj L

(A, ... Aj.) Precedes A i

(3, < 2 j or

if and only if Ju l 1 and ja< i2 or

.lilja -i2 and 3 -C i$,etc.

Once the state set has been ordered according to

the rule (3.3), each state can be represented by an

integer number expressing its position in the ordered

set. Thus, if i represents the state

(A. ,A i  , ... ,A. ), the one-step transition probability

16
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spectrum. It includes modulator, filters, etc., and

transforms the discrete-time input sequence into a

continuous waveform y(t). We assume that the channel

has a finite memory, i.e., that at time t the channel

output y(t) depends only on a finite number, say L, of

past source symbols besides the one emitted at time t.

We can write

(3.1) y(t) : f q(t-nT;a n "n)

where

(3.2) n (an -lan-2 .... anL)

nn.

is referred to as to the state of the noiseless channel '

during the n-th time interval ((n-1)T,nT). The

waveforms q(t;a,G-,) take values in a set of

deterministic, finite energy signals. The hypothesis

that the channel memory is finite justifies the

assumption that this set includes a finite number of

different waveforms.

The emission of an  from the source forces a

transition of the channel state from Cn to Cr.. . A

sequence of source symbol thus generates a sequence of

15
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L

An efficient computational technique to evaluate

the bandwidth occupancy, and more generally the power

spectral density of a digital signal, was developed in

(22-24]. This technique is based on a Markov chain

model of the digital signal, and is general enough to

handle a large variety of situations: for example, it

can include the effects of convolutional coding, linear

filtering and nonlinear processing of the digital

signal.

The communication system to which our theory

applies is shown in Fig.1. The source emits a

stationary sequence (a,) of discrete independent

source .
channel ..

Fiq.1 - Noiseless part of a diqital communication

system.

random variables whose statistics are known. Each an

is emitted every T seconds. The noiseless channel is

assamed to include every device between the source and

the point at which we want to evaluate the power

14
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The need for modulation schemes that employ

efficiently bandwidth and power in digital radio

communication systems has led to the extensive use of

phase-shift keying (PSK). As power spectra of PSK

signals exhibit sidelobes which may interfere with

neighboring channels, a certain amount of filtering is

necessary at the transmitter, to provide sidelobes

removal. The nonlinearity on the transponder will

however affect the power spectrum shape so as to

restore the spectral sidelobes, and this effect must be

accurately controlled in order to avoid unwanted

interference from and to neighboring channels.

For these reasons, it is useful to have a

technique to compute the power spectrum spread produced

by nonlinearities operating on digital signals. These

computations are usually performed by simulation, i.e.,

by applying a pseudorandom sequence to a model of the

system, and taking the Fourier transform of the output

signal. Such a procedure, besides being rather

time-consuming, usually leads to results showing the

power spectrum in a crudely approximated form.

13



3.6 POWER SPECTRAL DENSITY OF DIGITAL SIGNALS

TRANSMITTED OVER NONLINEAR CHANNELS

Efficiency of use of the radio spectrum for both

terrestrial annd satellite digital systems is a subject

of increasing relevance in communications, and spectrum

occupancy is a significant parameter in performance

evaluation. In fact, in many situations data streams

from users are assigned adjacent frequency bands that

interfere with each other in a larger or lesser extent

depending on the bandwidth occupancy of the modulated

signal. Thus, spectrum occupancy is a rough measure of

adjacent channel interference.

Moreover, for spectrum conservation the bandwidth

occupancy of modulated signals must be kept to a

minimum, without impairing the system performance.

This is particularly relevant in the presence of

channel nonlinearities, which may restore the signal

spectrum sidelobes that were previously removed by

linear filtering. An important example where this

situation occurs is provided by satellite transponders

in which a nonlinear device is present -- e.g., a

traveling-wave tube amplifier, or a hard limiter.

12
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moments.

The solution of this problem can again be found

from Krein-Nudel'man theory of moment bounds [21]. If

n moments of the random variable R are known, it is

possible to evualuate upper and lower bounds to (2.4)

that are sharp, i.e., no other bound based on moments

can be tighter. Although the theory is rather

involved, the algorithm which provides the result is

relatively easy to use. The algorithm itself is based

on the search of the roots of a polynomial which

provide the points of increase of the distribution

functions giving the upper and lower bounds sought.

Another algorithm, which appears to be computationally

more stable, has been obtained and is presently being

developed, and we hope to report on it soon.

S.
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More generally, we _'an assume that we are dealing

with a random variable R whose first n moments are

known, and we want to fin.: upper and lower bounds to

the quantity (2.4) for any given t.

This problem arises in several instances. For

example, we may want to determine the cumulative

distribution function of a random variable made up as

the sum of a number of Lndependent random variables.

The exact distribution function, apart from a few

special cases, is difficult to determine, but as the

moments of a sum of random variables are relatively

easy to compute, we can use this theory to find upper

and lower bounds to the distribution function. This

works better that the assumption, which is often made

in this situation, that the random variable we are

dealing with are Gaussian -- this may make sense when

the number of random variables involved is very large,

but has still to be verified. Yet another application

arises when a digi'tal communication system is perturbed

by a noise whose exact statistics are not known.

Sometimes the assumption of a given distribution whose

parameters fit those measured will work, but it may be

preferable to use the theory presented here, which

requires ro hypotheses to be added to the knowledge of

- - . . - .- a . . , , - , . . . . . . .



-N

N SS

FROENY' BI ROE

Fi-. Poe estSpcrmofabnr S in

a-~' Beor fitei

b- Afe fitrn fle-sa4pl utrot

wit ap 3-d bnwdh24R Rteitr e

c-I Afe a rvnatstrto

d-~~~~~~~~~~~ Afe hUaeTT iha6d nu akf

e-~~~~~~~~~~ Afe th*aeTT iha1-Biptbcof

24 U-



This figure shows the power density spectrum of a

binary PSK signal first filtered through a fourth-order

Butterworth filter , and then passed through a

nonlinear amplifier driven at or near saturation. It

is seen that, although filtering removes the sidelobes,

they are restored by the nonlinearity, to an amount

that can be evaluated with a good accuracy.

Other avenues of attack have been explored as4J

well. One which at first seemed particularly promising

is the use of Volterra series to model the nonlinear

channel. This approach proved to be very fruitful in

the context of evaluation of error probabilities, as

explored in [26-27]. However, Volterra series do not

appear to offer any particular advantage when the

nonlinear channel has to be modeled in order to derive

the power density spectrum. Actually, our practice has

shown that when the channel is made up by cascading a

number of blocks (typically, filters and nonlinear

memoryless devices) the best approach to derive the

waveforms at its output is simulation. After this

preliminary simulation has been performed, the

analytical tools previously described can be used to

compute the power spectrum.

25
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4.6 OPTIMAL RECEIVING FILTER FOR DIGITAL TRANSMISSION

OVER NONLINEAR CHANNELS

A problem arising in digital transmission over

nonlinear channels is the design of modem filters.

Filters incorporated in present-day modems are not

necessarily optimum when the channel is nonlinear, as

they are usually designed with the Nyquist theory in

mind. The early INTELSAT 4-PSK TDMA modems specified

Nyquist filtering, with a 36-percent rolloff Nyquist

transmitting filter combined with an f/sin f aperture

equalizer. The receiving filter was a high-order

elliptic filter, whose bandwidth was selected so as to

maximize the noise rejection while not degrading the

Nyquist response of the transmitting filter [28].

Recent research is aimed at selecting optimum filters

for a nonlinear channel model, either by choosing the

best values of the parameters within a given filter

family [291 or by designing the frequency

characteristics of' a filter which is optimum under a

specified criterion [3].

By using the channel model described in the

previous Section of this Report, and which is based on

a set of output waveforms connected to form a Markov

chain, we developed a theory to design an optimum

26
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receiving filter for digital transmission over a

nonlinear channel. The filter is chosen so as to

minimize the mean-square error between the transmitted

symbols and the samples of the demodulated waveform.

Besides providing closed-form expressions for such

optimal filters, it was shown that the structure of the

filter corresponds to a bank of matched filters, each

followed by a linear transversal filter. This result

is a generalization of a well-known property of optimum

receiving filters for linear channels. The performance

of the optimum receivers can be computed, and its

performance compared against that obtained through S

conventional designs.

Some results obtained are reported in Appendix C.

It must be noticed that the full generality allowed by

the theory developed there has not been exploited in

full. We hope to report soon on this topic, by

preparing a comprehensive paper covering also the

connection to previously known theories, and showing

the applicability of our theory to a situation in which

the channel disturbances include also interference from

adjacent channels.
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5.0 MULTIDIMENSIONAL MODULATION AND CODING FOR

BANDLIMITED CHANNELS

In digital communication over radio channels, both

available spectrum and transmitter power are generally

limited. Thus, to cope with the ever-increasing demand

for digital communication services, more efficient

transmission techniques are called for, and the search

for bandwidth- and power-efficient modulation systems

has become a very active research area. In fact, it

has been recognized that a third relevant factor enters

in the tradeoff between bandwidth and power, that is,

the complexity of the communication system. In other

words, if a certain amount of signal processing is

allowed at the transmitting and receiving ends of the

system, its performance can be improved without

increasing neither its bandwidth nor its power.

For example, as higher-dimensional signal sets are

known to afford possible performance improvements,

four-dimensional modulation can be used in the signal

space constituted by two orthogonally polarized

electromagnetic waves. Another technique, which was

recently proposed by Ungerboeck [31) and which has been

receiving a wide attention (see also [32]), is based on

a combined modulation/coding approach. In standard
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applications of error-correcting codes, extra bits must

be added to the transmitted symbol sequence, with the

modulator operating at a higher rate, and hence

requiring a larger bandwidth. On the other hand, use

of coding can decrease the power requirement necessary

to achieve a given performance, so that this gain in

performance (usually referred to as the "coding gain")

can compensate for the sacrificed bandwidth. In other

words, the tradeoff is increased complexity and

decreased bandwidth efficiency for increased power

efficiency. With Ungerboeck codes, one can avoid the

loss in bandwidth efficiency by using a technique

characterized by the fact that the redundancy required

by the coding process is provided by increasing the

number of coded symbols instead of the bandwidth. With S

these codes, the tradeoff is increased complexity for

increased power efficiency.

Some of the results we obtained in the study of

this class of codes are included in Appendix D and

Appendix E. In particular, we considered a combination

of multidimensional signal sets and Ungerboeck codes, 0

an idea which seems to be very promising in terms of

applications. We introduced a new class of signal sets

for modulation, that we call "generalized group codes"
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and which are based on a peak-energy constraint. These

alphabets have a good deal of symmetry, a feature which

is apparently necessary to design good Ungerboeck

codes. Moreover, design techniques are derived, based

on a partition of the signal set stemming from the

partition of a group into cosets of a convenient

subgroup (Appendix D).

We have also investigated the power spectral

density properties of the signals obtained from an

Ungerboeck code. In particular, we have shown

rigorously that, under certain mild symmetry

contraints, Ungerboeck codes do not alter the power

spectrum of the modulated signals (Appendix E).
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APPENDIX

ri thi.s App.- : i we, compute the probablli*'i> zii for

the t tua t i r, je" 1 bed i n Sec t io n 1. WE 03sume that, the random

a r b .es In the nequence ( a.) of data symbols a re i odependert. ,and

.( K 1,n values i- the set A~ ot .. ... (Y-, with probati I ities

p a. z1 I inb seen that the c h an n eI"- sttes frm a

nomcge neo us Ma rko v c hain. The one-to-one or re,,; ocdern(,e between

channel states and the integers 1,.. .,M can be set by ordering the

e 1ement-s of A ( for example , 0 <o(<. . . < O ) and introduc ing among the

Li+I)-tuples .... . anL the lexicographical order induced by

'he oraer oft A. The states can then be represented by integer numbers

f'-m 1 to M by expressing their- position in the ordered set. 1hus, if

* epresents t he state 0( , c. 'o a nd i the state

Nc J...f ), we have

P,1

00

This research was sponsored in part by the
U n ited Saes Army through its European
Research Off 'ce.

DATA (a-) NOISELESS X(t) y(t)ESIAD
!ij i +RECEVERDATA

1(t
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Assume that we want to evaluate the power spectrum of the signal

x(t) at the output of the channel of Fig.1. If 0(f) denote, the ,ec-

tor of Fourier transforms of the waveforms {q(t;i)}4, , and the symbols

a, are independent and identically distributed, with the simplifying

assumption

we have the following result for the power spectrum of x(t):

where Re(.) denotes the real part, the dagger denotes conjugate

transpose,

-jrT + + + L e-j~i2Lt
A(f) + , . e

and P is the MxM matrix whose elements are the probabilities

(see the Appendix).

6.0 CONCLUSIONS

We have described a number of parameters (error probability,

minimum distance, cutoff rate, spectrum occupancy) that are useful to

evaluate the performance of a digital communication system. A rather -

general system model has been assumed, which is easily amenable to

analysis and is based on the hypothesis of a finite memory for the

',ansmission channel. Based on this model, we have described the

cGmputatlonal techniques that can be applied for evaluating those 5

prametera. r 14]

S. ..
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•exp- - 2 k m)) 4.5)

where IT
(12(i,j) Jq(t;i) - q(t;j)l' dt

0

are the Euclidean distances between the waveforms or the set

fq(t;i)} 1 The probabilities appearing in (4.3) can be computed as
iI,

shown in the Appendix.

5.0 COMPUTATION OF THE POWER SPECTRUM

Efficient use of the radio spectrum is a subject of increasing -

relevance in communication. For spectrum conservation the bandwidth

occupancy of any communication system must be kept to a minimum

without impairing its performance. As many channels as possible

should be accommodated in a given portion of the frequency spectrum.

As a consequence, the spectrum occupancy turns out to be a significant

parameter in the design of a transmission system in which several

users share a given frequency band. Whatever the criterion to

evaluate the spectrum occupancy (for example, the bandwidth in which S

99.99% of the signal power is contained) its computation must be based

on the power spectrum of a digital signal. The computation of power

spectrum is a relatively simple task when performed by simulation,

which is done by applying a pseudorandom data sequence at the system

input and computing. the Fourier transform of the output signal.

However, this procedure, besides being rather time-consuming, leads

usually to the power spectrum in a crudely approximated form. A

computatlonally efficient technique, which combines simulation and 0

mat)ematical analysis, is described in the sequel.

0•
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Is described in [1O].

4.0 COMPUTATION OF THE CUTO'" RATE

Consider now a digital communication system In which a code has

to be used. To evaluate the coding capabilities of the channel, a

-easonable criterion would be to choose the best code for that

channel, and the corresponding error probabi!ity. But this cannot be

done in general, because the selection of th best code is hardly

feasible in the practice. Now, information theory provides us with a

-csult concerning the error probability that can be achieved over a

gven channel as a function of the transmission rate. The result is

tIe following : there extsts a block code of rate R and length n such

that the error probabilitv is upper bounded by

C. - (4.1)
o

where c is a constant, and R. is a parameter Jepending on the channel,

.nd called its cutoff rat-. This relation p'aces in evidence the way

at which the attainable er,o probability decays as a function of the

block length of the code. The larger R,, the better the channel. 0
Hence, R. provides a useful one-parameter characterization of the

quality of the channel in terms of its coding capabi)ities [1)].

An expression for the ,utoff rate of the channel of Fig.1 has

"een derived in r12 (see also 113] for similar computations when a

onvolutional code is used,. The following ,esult holds:

where A Is the unique real and positive e-1genvalte of the Mw M

matrix whiose elements are

.-

0 l
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3.1) it is seen that this is the relevant parameter for assessing the

performance of a digital system equipped with a maximum-likelihood

sequence detector.

Unfortunately, the minimum distance does not seem to be

expressible in a closed form. Moreover, its direct computation based

on (3.2) is impractical in most cases of interest. Thus, for the

evaluation of d. I one must resort to algorithms suitably designed.

'The such algorithm has been applied in [8] to the transmission over

lirtear channels. It is based on a computer-search approach, and

results into a small "sufficient" set of sequence pairs (.),(.

differing in few positions. The minimum

,)r JJ7_[q(t-nT;tn)-q(t-nT;gL)]{l taken in this set provides the

minimum distance.

The computation of d in for a nonlinear channel has been studied

in '91, under the simplifying hypothesis that only symbol sequences S

differing in just one symbol contribute to the value of the minimum

dis*;-nce. Consider for simplicity binary symbols, and L+1 consecutive

channel states n 9 1 ,h,..., L). Take another L 1-tuple

2 '* n, with k. differing from tn only in the first 5, i 
'diern

position, , differing from 6-.1 only in the second position.

from in the third, etc. Compute then

for all possible pairs ,-' (for uncoded binary symbols, there are

2 such pairs) and take the minimum value found. This is the

inrimum distance. Although this method needs the manipulation of a

1;-,;e number of sequences, the numerical operations required are quite

3i m p e '

Yet another technique for the computation of the minimum distance

"S
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same set of moments can be tighter.

Moment bound techniques are described in [3] for linear channels,

and in [13,[2],[4] for nonlinear channels. In 17 ! the case of

cfrrelated random variables an is considered.

3.0 COMPUTATION OF THE MINIMUM DISTANCE

In the previous section we have considered the error probability

a simple receiver whose decisions are taken symbol-by-symbol. In

c2ertain systems, however, it may prove highly beneficial to include a

more sophisticated receiver to achieve nearly ideal performance. This

can be done by using a maximum likelihood receiver, in which the

decisions on a data sequence are taken by considering all the possible

transmitted sequences and choosing the one most likely on the basis of

the observed signal y(t). The operation of such a receiver is

analyzed in r63 for linear channels, and in [7] for a nonlinear

satellite channel.

When this receiver is used, the symbol error probability is

closely approximated, for a small noise power, by

d.mirk
P(e V ' rfe ( m , (3.1)

where K is a constant, N,/2 is the two-sided power spectral density of

the noise v'', and dmin is the minimum distance, defined as

I,]A
rn A, s , irk r.-nT;&') - q -. 'P; ) } (3.2)

with Iz(t)IZ denoting the energy of the signal z(t). In words, dmn is

the smallest possible Euclidean distance attainable between received

signals stemming from different transmitted symbol sequences. From

0-
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P( Eerfc t

if the channel is riot linear, q(to; n) depends on an-L

in a nonlinear way. A useful representation of this dependence is

provided by expanding the functional relationship between q(tot,;) and

in a Volterra serles, which will be truncated to a

finite number of terms. This representation Is discussed in [1] for

baseband channels, and in (2) for passband channels.

Consider now the problem of evaluating the averages appearing in

(2.2). !n the most general case, we are faced with the computation of

an average of the form Etf(ah,,afl z ,...,a_)], where f(.) is a known

function of the L random variables an-i,..., an l . In principle, we

can compute this average by enumerating all the possible values taken

on by f (.), but this technique is computationally impractical whenever

the number of these values is very large. As an example, if the

rand.-m variables an are independent and take on N values, there are N
L

possible values for- f(.). For instance, N=8 and L=10 would lead to

about 10
9 

computations of the function f(.).

A method that yields both accurate and computatlonally tractable

results for the computation of the average required is based upon the

theory if moment bounds. Basically, It consists in the derivation of'

upper an, lower bounds to E[f(a,_ .... ,an_ )] based on the exact

evaluati.)n of a number of averages like E(p(af.,...,an-L)], where

p(.) L a poyn',mlal function. When the random variables a. are

statist,'ally independent, the bounds can be expressed in terms of the

momsnt3

i(.

-ese b-unds are ptimum, in the sense that no other bounds using the

, .,

.O .
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I'q(to;E' )+v IC' + 2' Pf~(t ; )+v ma =~
C r n 0n f

wnoere Jlv(t,,+nT) is a Gaussian random variable with 7ero mear and

known variance o., From (2.1) we can write

P( e) {erfc f(ttnja ~

E~erc '('~A0 Y ~(2.2)
+ t Eferf

I
V

where F denotes average taken with respect to the random variable

The following tasks must be accomplished for the computation of

P'. Firstly, we have to write down an explicit expression for

J(t 0 ;Q. Secondly, we must compute the averages in (2.2).

Suppose first that the channel is linear. Then q(t,;t,) depends

linea-1y on the random variables a ,weca wit

on i n-

where h., 'h4._, are the samples of the impulse response of the

channel. Hence

q~to;rn) = h an + (2 (;4)

where

L

L 1a.- (2.5)

i! called the intersymbol interference term. Observinr, that Z is a

symmetric random variable, i.e., Z and -Z are equally distributed, we

hav- from (2.?):
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where {q(t;i)lM is the set of waveforms (of duration T) observable at

the output of the noiseless channel in the interval 1.O,T). The

sequence ( )_ Is made up of random variables, called the c.ha nnel ""I

states, taking on M possible values. With our assumption of a finite

memory for the noiseless channel, each t, depends on a finite number,

say L+1, of input data symbols a. , so that we can set a one-to-one

correspondence among the t, and the (L+1)-tuples (a,,a,_, .... ,aL).

This correspondence allows one to determine the statistics of the

sequence ( ), and hence of x(t), when the statistics of the data

sequence (an) are completely known. We assume here that (a,) is

stationary.

The signal observed at the receiver front-end is, from Fig.1,

y(t) = ( + vlt) '1.2)

where v(t) is assumed to be a white Gaussian noise process.

2.u COMPUTATION OF ERROR PROBABILITY

The error probability is a basic measure of the performance of

digital communication systems. In this section we consider a

sitjation in which the receiver operates by sampling the received
A.-

signal v(t) every T sec.The decision a, on the n-th transmitted symbol

is based only on the value of this sample. For simplicity's sake, we

shall confine ourselves to consideration of the case in which the

input data symbols take on with equal probabilities the values ±1, and

modu'ate linearly a given waveform (this situation corresponds to

binarv PAM, or PSK). The receiver compares the received sample with a

zer, threshold, and sets a=+ if it lies above the threshold, an =-1

otbfw, Se. For a sample taken at time tn to +nT , the symb'jl error

pr.bahtutty is given by

.. . ........................-.. . ....... ,, ........... 49



the evaluation of their performances becomes more demanding. For

example, in satellite communications the efficient use of available

signal power and bandwidth makes them to operate on a tightly

bandlimited nonlinear channel, where the computation of error rates

(say) is not analytically tractable.

The aim of this paper is to review some of the techniques that

have , - recently proposed for evaluating the performance of digital

communic ion systems. The emphasis is placed here on the

computational algorithms that allow this evaluation to be performed

without resorting to simulation techniques, which might he either

prohibitively expensive or not completely satisfactory in terms of

accuracy.a|

We are interested in considering digital communication systems

such as: high data-rate transmission systems with limited bandwidth;

satellite and microwave radio-relay links with nonlinearities;

multi-path and fading transmission systems. The common feature of all

these systems Is that they can often be modeled as follows. At the

receiver front-end of the system there is a desired signal component

disturbed by an additive noise term. Under the assumption that the

noiseless portion of the channel has a finite memory (i.e., the

received signal at any given time instant does not depend on the

infinite past of the transmitted signal) the number of waveforms that

can be observed, before the addition of noise, in any time interval of'

finite duration is finite. With reference to Fig.1, if T denotes the

inverse of the symbol rate, i.e.,the time interval between the

emission of two conbecutive symbols, the signal x(t) can be

represented in the form

n

x~r~ = i . -t T n ) 1.1

0



COMPUTATIONAL TECHNIQUES FOR EVALUATION OF
COMMUNICATION SYSTEM PERFORMANCE

Ezio Biglieri

Dipartimento di Elettronica
Foliteenico - Corso Duca degli Abruzzi 24
"-10129 TORINO (Italy)

SUMMARY

In this paper we review some techniques for
evaluating the performance of digital
communication systems operating on channels
characterized by additive Gaussian noise as well
as linear and nonlinear distortions. The
parameters considered are the error probability,
the minimum distance (useful when a
maximum-likelihood sequence receiver is used), the
cutoff rate (useful when coding has to be used on
the channel), and the spectral occupancy (useful
when two or more users share the same frequency
band). The emphasis is placed on the
computational algorithms that allow these
Darameters to be evaluated numerically.

1.0 INTRODUCTION AND MOTIVATION OF THE WORK

In recent years, there has been an increasing interest in digital

communication systems. This is partially due to the availability of

novel digital signal processing devices as well as to certain

attractive features of digital systems, as for instance the fact that O

digital signals are more amenable to enciphering and deciphering than

analog signals for secure communication purposes. On the other hand,

the ever-increasing demand for digital services has suggested the

introduction of more efficient, and hence more sophisticated, O

communication systems. As the complexity of these systems . .ases,
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me~asured with finite accuracy, or because we want to estimate the error
probability for a class of channel imnpulse rtsponses. Several nunierical
examples are provided which -.hot* (he ranrge of applicabi~ld! of At-,
technique.

1. INTRODUCtiON

In recent ycars, several techniques have been proposed to
evaluate error probabilities for digital communication systems in
tht. presence of additive noise and randorn interference. Among
these techniques. multidimensional moment hounds [11 appear to
be most useful, because they are generally very tight and can be
evaluated with mrodest comiputaitional effort. Moreover, no other
bounds ba Wd only on the moments of the random interference
can be tighter.

In this correspondence we extend the moment bound theory to
the computation of error probabilities in a situation in which the
moments of the interference are known only in certain intervals.
The model assumned for the analysis is the following: consider a
digital communication system where the output decision random
variable at each sampling instant is given by

R - ah + Z+ 1"(1.1)

where a is the input information symbol taking on values in a
finite set, h is the known positive peak overall sampled system
response, I, is an arbitrary random noise with known cumulative
distribution function F(.), and Z is the random interference,
typically modeled as a sum Of independent random variables. We
assume that the random variables a, Z, and P' are mutually
independent, and that Z has a finite range -D, D]1. Evaluation
of the error probability of the above system can he based on
moment bound theory by first expressing it as the average

where Y -f(Z) is a random variable with finite range [a,hbl,
Q(.), f(-) arm known functions, and Ey denotes average taken
with respect to the random variable Y'. Then, if the finite sc-
quence of mioments fc, 17.is available, where

c,A E[Y', i I ,.* ,n, (1.3)

the moment bound theory, as developed by Krein (2], provides
the tightest upper and lower bounds to E1 ,fQ(Y)l in the form

Probabilitv of Error for Digital Systems with IV, N"

*Inaccurately Known Interference Ew,'Ul(y,') s Ey[Q(Y)] s w," Q y,") (1.4)

* LLIQ1 M Blt2LtERI. SE~NIOR MEIMBER, IEEE
where the abscissas (').i (y"'}"I and the weights ~,';".',,

S Ah.orac-The "moment bound theory" is known to prvd a wif (w," )Ci- can be computed on the basis of the moment set
technique to evaluate error probabilities, for digital cummunication sytems~ (C,417. The values of N' and N", as well as the rules for
in the presence of additive noise and random interference. In this coe computing weights and abscissas in (1.4), vary according to the
spondevnce Ilust theoes is e'.tendrd to the cowe where the mo m of the parity of n and to the sign of the (n + 3)rd derivalive of the
interference are known only Avithin certain intervais and uipper and lower function Ql in the interval [a, bl. Details on the actual evaluation
boundts to the error pruhabilitiv% are '.ouighl. A situation like this can occur of moment bounds can be found in [11. togcther with a numbherof
in w'seral applications. For irt-iiipl. the exact statistics of the inte'rence generalizations of the model considered here.
may not be known, and oiiii esliniate% of the first moments ma) he As an example, if a takes on values ± I with equal probabili-
mtabale. Another vsainpir ariss %heiu the %q,nal is disturbed hs) inters,,n- tics, and P is a zxro-mcan Ciaussian random variable wvith van-
hot loterferriwe g~enerate-d bs it thalilet inpuv&t rrepuise A~x% %api ance a2 the error probaility~ in (1.2) takes the formi
are know-o iinlN it% A tt-ria.. ,irrnat-eiiher betaust thieN have been

O iu fp IIr :,ji- , Noc ,,,,' I i-,' :,, tt, If,,n 1- .Pit, cs
A- .ih, r-l Ild M [ii,-' 01C k. nii iic,'nArm% )'oitiits -- (olwans ~(~) vf(~2

Rcscatir Ahr,,u t 11 %i n %, pr'I- m~' iwr at it.. 111 ,.frato l wh r

(9)1 ~t944/K4/300-0441$Ul (Xl TA19H4 IELI-
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Fig. 1 Locus rn of vcctors c such that c e c cc".

Hence, we can write cause we want to estimate the error probability for a clays of
channel impulse responses.

- EQ(1.6) The solution to this problem can be obtained by using a theory, L[ developed by Krein in conjunction with the so-called
This is equivalent to the choice "ebyev-Markov problem with moments in a parallelepiped"

[2]. This theory deals with the evaluation of upper and lowerY - h + Z (1.7) bounds of the integral

and U(x) - Q(x/a) in (1.2). However, this is by no means the f'Gbx dP(x).
only available choice. In fact, if we take a .

Y - (h + Z) 2 , (1.8) where G(.) is a known function, and P(.) is the cumulative 2
distribution function of a random variable whose first i moments

the error probability can be expressed as are specified in the form (1.10).

1. MOMENT BOUNDS WITH MOMENTS IN A- Q(i '] PAMALLELEUIPED

which is valid provided that h - D : 0 (the "open-eye" assump- In this section we shall briefly outline the theory of moment
tion). In this case f(x) - Q(vr/o). bounds with moments in a parallelepiped, and we shall derive a

In this correspondence we shall consider the situation in which solution to the problem posed in Section 1.
the moments (c, )., are not available exactly, but it is known Consider first the set of all the probability distribution fune-
that they Ic in finite intervals In other words, two ~ I, Lions F.(.) of the random variable ' whose range is the finiteinterval [a, b] and whose first n moments are cl, .,c, Dcnotingand ( ,). are known such that'' such set by V(c), where c is the n-vector whose components arc

', c, I,. n- . .n. (1.10) c, ",- ,, the "classical" moment problem can be formulatcd as
the search for the minimum and maximum values of the integraland we want to find upper and tower bounds to the system error f 2(y) dFr(y) as F,, ranges over V(c). More specifically. we

probabilities.
A situation like this can occur in several applications. For seek

example, the exact statistics of the interference may not be 1(c) - minf((y) dF,.( ) (2.1)
known, and only estimates of the first moments may be available. F E v(.)
Another example arises when Z represents the intersymbol inter- and
ference generated by a channel impulse response whose samples
are known only in a certain interval. This may occur because ](c) - max ('f,(y) dF(;,). (2.2) 0
those samples have been measured with finite accuracy, or be. rv. V.

. . . . . . . . .. " " . "- - -.. *. i - " .- ' " " . - . -" .
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1ABIit I('oider then iwio n-)etbors c'and c", with components cj,- -. c C'ONI)is fo~R nil, VAt 11)1 Y Of I hiOKIS 2
and c;. (' ', rCNpcctLICY We define a partial ordering in the WIRN IFH NmiSI 13 (,ASSiAN

* spac R" of ni'4cct~irs hs defining c' -< c" if c ' c" and

r ( I) &~ ( I)' Ar k' I n. (2.3)Y- Z)-)

* The %c F ofocctors c uojh that c' 4 c 4 c"i. then th paral- Q() I 0>i~ cd

(2.4)

Pip,.flk c and c" ie the crndpoints of the "oblique diagonal"
.I ('L_ 1!4 1 for an e~ampie). We have the following result. Ill. APPLICATION :o i ti GAUSSIAN CASE

I Jheurin / [2. p. 2081. If c' and c" are moment sequences of In this section we shall examine closely the implications of the
randomn variables with fuute range (a, bl, and a > 0, then any c technical conditions (2.9)-(2.11). Since their validity ib dependent
such that c' mt c : c" is a moment seune on the choice of the function 9Z(.). we shall consider the two

Let us now suppose that the random variable Y has moment spca ae osdrdi etinI aey 17 n 11)
sequence ong in the parallelepiped 11 whose endpoints of the correspSondinlg to il(x) - Q(.1/o) and S2( i) - Q(V-%/oa For

obhqu diaonalarc the ti-vectors (cl. c,, c;,- ) and other possible choices of il(-) (see 111) the analvsts can be- worked
~ c'-).If we denote by v(n) the set of all the out by straightforward extension of the techniques presented
prdiliydensity functions whose range is [a, b] and whose here.

rno:ucwnt sequence lics in the 11, the moment problem considered .Consider first condition (2.9). which requires mmi Y' > 0 Ims
ifthe nritioduction can be formulated as the search for the is equivalent to the requirement that II - D > 0 (the open-eye

minjimum and maximnum values of the integral f.'()(y) dFy(y) as assumption) when (1.7) holds. If (1.8) was chosen, condition (2.9
F, rnge ove V(11).Tha isis always satisfied, but the eye must be open for (1.8) to hold
F~ () rngesove V(II).Tha isThus, h - D > 0 is a necessary condition in both cases.

*1( 11) min fh11(y) dFy(y)t (2.5) Consider then (2.10). If fl(x) - Q(x/o), we have for k a 1:

and ( -1) Al 0  1) e- 22,14-

](11) - max f 12(y) dFy). (2.6)(31

The following theorem holds. where 11.(.) is the Xerrnite polynomial of degree Pi [3. p. 6911.
Theoem 1.. p.220: i n s th se ofn-vctomc sch hatHence, for (2.10) to be satisfied. the following must hold:

c' _<c _5c", then o-2.) 1 ', .( - ) 0. A - 1. 2.~. 0.2)

and and

1( 11) i (c") (2.8) ( )"A Q(q) !0. (3.3)

prOVIded~ that If n is even. (3.3) cannot hold true; if , is odd, (3.3) is always
U > 0 (2 9) satisfied, and a sufficient condition for (3.2) to hold is that

-~ ~~~~~ r2fIi(). , ~ a a be larger than the largest root, say~ t, -, o.tf 11, 1 (X),
0. k - 1. 2. -,n. 2..10) k - 1, 2,- -. n. Moreover, since the value of t, increases with

Doi" "(0 > 0, for a s I _- . (2.11) increasing A, the sufficient condition becomes

* As a t 0imay be arbitrarily %mall, the rule for determining /(11I) a 1 i (3.4)
aind h I I) embodied in Theorcin 2 can he extended to the case72
a- () 12. p 2201 where It,, denotes the largest root of It, (x). and a - It - V.

Befort: proceeding further, let us comment briefly on the results If on the contrary S!(.x) -Q//a), from IlIl we have
suitiiizned hy the thcorem. If the technical bonditions
29) t 2 11) are satisfied, then E, I Q( Y'll and hence the error I-I (i( (l' qa) C
il)lbabilI'. I, bounded above and below by two "Standard-

* iflicei bound%~ hr"c' and 1c'). Evaluation of these two hotunds I. (1-
(,n he permcdi~i b~ uuing the techniques described in [1). where wkhere g, ( ) is a noicro po'nomial with nonncgatioc kioff?-
iht: mnomnt sequcnkcs to he used for the I.alculation are obtained insEqthsnca>0,frnxd(21)INkoj%

,i aking ,illernatclii the ulper and lo~cr bounds of (1 10). In cet.E 25 hw ht ic .fr' d .I) sa'a.Satisfied.
fact. )i3 Lomipari,,on of (1 It)) and (2 4) it is seen that the vector% Coiider finallos 12 1I[1 The computations iust pierfoin- talk

* C heuscl ii(7 ( ( .5 arcgivn t, h used to show ilihitIior 11(,\) - ( %1/n) (2.11; hold, itue fori

odd provided ihait

Since , > 1' It)i. "uditions implies (.1 411 a, mll Siilairls.
I. ..1f~. or S(~) QI 'ind i odd ihiLne cn hiIi 1) Ikhjo

I '. .. hold, true
l'he condini fori h- salidiiv of Thicorti ii ar.e utiniarilcdl

* j 1i odd~ In Trable 1. ItIis scco i01M in hboth cases it i-, icce''ars, 11i,i1 P1 h,



446 lilt IKANNA( iliNs ON iNliOR1sAiiO 1111 .K), i il t. Nil'i. MiAK4 11 19?M

C2 aind (Aj:', [fo ( I,,) in (4 1) will proi, dc Ito _sets of ffl(P
mcn.'rts ( (. ):'- 1 and ( , that satisfy (1 10), and hcil allow
one to use the theforv outlined in Section It

--------- C hcee results hdasc t cn ippiicd to 10 i - ein whose nominal
Cz irimptilse response is specifici b 01~C Gallssian pulse

- (M/Si samled~itmu~tpk~'I [he i h 1. 1. is taken
as (i, and

We assume that the /i & :1.,&iiai around their
C C, ~ nontinal values witin an interval of Width -I h'' WC d tineC

I-qj Upper and loer ht',nub it tro., probabilti for a binary communi- Wl-
ji ,n i)-. . d iiSc (,ivuinf nose Aind inlersynibol

-iirf -,. gner (if i! . ti n jio~ tior normpile %an luesa and the signal- to-noise ratio (SNR)

od o d _i's !o. a1 rctio In fat, it can -bc easily dgtl~f4mmn ons
p Ioe Olit 's 'sufi .kl CT ' Kowc .'I( ) into 1-W ) (i-.e.. to By taking n - 10 moments, anti choosing Y - h + Z, we obtain

l(Alil I . miiiic ilc thco[iti hold for it evcti as the numerical resuilts bhown in Fig 2 for the error probability, of

I 'sNIriAt.A R~LtSfV.CNLSO

'.et'nwe resr' som nuenc' rsuls fr te ero he theory of moment bounds was extended to encompass a
hoidt1o', d~scus.C In Sections 11 and Ill. In particular, we situation in which the moments of the random variable represent-

SL1COiISIli'i t h!Twi ,~ sssterni perturbed by additive ing the interference art- inaccurately known. In this case, the
(wsinro;c aiid int's. rhid interference, vlaino pe n lower bounds to the error probability is

whic th seqenc ofmoments is construc ted on the basis of the/ ,h,(4,1) upradlwrbudtothc moment.%ofZ

Where 0~, 1 I., air ndepcrident identically distributed MFERENCES
randoin var~ablcs taking N: alue', I wsith equal probabilities I I K Yao and F_ Biglier. "Multidimeinsionial iorncrit error Waunds for -

'A' a',,umrc ihit the: ai;lic, i 1. .1_, of the channel dtitiat comur~icaton stemrs." IEl.E Tram I'rmr. Theiwy. vol rr-26.
impu e ~'si'C re i~i irme)knon, s thi ech o thm sno 4. pp 4541-464, Juls t9tOiinpul~~~~~~~~~~~~~~c2 Mpw~ ari (nt i~tl nws htec ften i rein and A A Nudei'man. Th M Ark {oment I'roblent andlics in a ltinii :rttc:val whwi b)oundarits are known: Exre0witProblenu. TrAnsi Matti. Monograptis. Vol. Ji' Providence, KI:

Arnericant Maiheinial Soxieiy. 1977.
h,-- h, Tih. I - I , 1, (4.2) 13 1 M. Abramnowit2 And I A. Sieguin. Eds.. HctrwNik of Muthenwaggcal F~uunc-

(o,,dci;r ilie momenits o' /, all of its otdd-re moments areaW~sugn.DC a tu tn.
zcro, whcrcjs thc i'secn ,rkf 7ti 1mnni ran be given the form

it [ ~ ~ si Zm )h;-- h-'-, (4.3)

where the suninmation !N PAICended over all the possible L-tuples of
different induce5- ill P?? om uch that 2, - +2m, - 2.

The notation (2t 2mi:01, _-n m denotes the multinomial
coefficient, whic-h is ptosilve. andi we have taken into account the0
fact that F[ (i-- - I for i;1 r Fq (4 1) shows that the even-order
nioiclnts of / are pol, ci iuai in thec siriates. !,- ? with
tuminegatt,c coefficient,,, -viiih implie, thit, they are increasing
functions of h 1 h: Jr his shows thal. by substituting for

h,, hin (4 3) Oi i ~iicinuin and niimtuum values. respec-

such th.ai

1-~~~ /7 4,4)

( n,,ider r o, the raint v~iiahles i It . and Y - (bJ
7 li- ii lijilis . .11 C piC''ssl a i isems iliiough

iY I hI 7)

1; (4 5)

%k it p . Sili- j o -qrcssihitci a lint-ar conmbinatioii
of iitmiii t L, tsili' 1%' ? 'sss.l fiicnt,,. stihliiriin of : ia

MIX 9Q44/PA4/VO-46SO 0 C9R4 ll~liF
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OPTIMAL LINEAR RECEIVING FILTER FOR DIGITAL

TRANSMISSION OVER NONLINEAR CHANNELS

E. Bigileri, M. Ella, and L. LoPresti

Dipartimento dl Elettronica
Politecnico di Torino, ITALY

0it <T, choose the erpulse response u(t) oi" a

.rhu o; : mkn lineur receiving filter for linsar time-invariant system such that the
.2 .ii tr,nnissior over a nonlinear channel is quantity

tqeclr~eJ. under the aseumption that the channel
)a fite memory and that the noise is -1y(t )*U(t )--( )f

2
i (1.3)

ulitivwe u,,UtaLsun, a:t optimum receiver is sought

in tnh fo:- , ot a lintur receiving filter followed (wheru denotes convolution) is a minimum.
Cy a avituol-rate sampler and a memoryless
Jucision dev:cu. Thu receiving filter is chosen The problem just stated is the formulation,
so Js to mininize the mean-square error between in a rather general form, of a problem arisin, in
the Input to the decision device and the data transmiselon. We want to specify an optimum
tran: Itted symbol. receiver in the form of a linear receiving filter

it to shown that the structure of this followed by a symbol-rate sampler and a
cptirwn receiving filter corresponds to a bank of memorylesa decision device. The channel is
mi"ce,uod filters, each followed by a linear assumed to be time-invariant (linear or
transversal filter. The number of matched filters nonlinear), and to have a finite memory. The data
is equal to the number of linearly independent symbols may be encoded, and the memory introduced - -

wiieforms that can be observed at the channel by the encoder Is assumed to be included in the
output in a symbol period. This result is a channel part of the data transmission model. The
generalization of a fact which is well-known for channel consists of a noiseless part followed by
itneurly modulated aignals transmitted over the addition of noise. This noiseless part is
linear channels. Also, the performance of the depicted in Fig.1 . A sequence 0% ) of
receiver so iptimized is evaluated and compared independent data symbols Ia fed into a shift
to coutent'oii ne' ie it nu. register with L-I delay elements (denoted by 1) in

the figure). The L-tuple (n ,a
denotes te state of the channel at the disclee
time n. We assume that there are M different such

2'7AT !.!E T JF THKIF P'hIiLK, AND MOTIVAT[ON O THE L-tuplem, that we put in a one-to-one
'.01K correspondence with the integers II. . In any

time interval of duration T there is a finite
Let ti -t be a uet of finite-energy mber of' possible signale at the output of the

noiseleos part of the channel, end they depend on
.ateform ltn common duration T, and t n) a the state of the channel. We denote by q(t-nT;t.)
wiie-aeise R etton'lry sequence or 'a; P om two wavefom at the channel output in te
varIables taking values in the set I..M}. interval nT'4t<(n+i)T. Thus, before the addition

,onsider tier, "he aitnalb of noise the transmitted signal has the form

(1.1) and the signal observed at the receiver's

x(t) - -- t-n;) (1.) front end has the form (1.2). For a receiver

.... structure as depicted in Fig.2. we want to cloose
and u(t) such that the skaple y(t) taken at time

t *nT is as close be possible to the transmitted
y(t) " (1.2) eubol an. *If we define a(n a n the quantity

S.t.i c ncise process independent y(tn)*u(tn)-a(l) in (i.5) is the difference

the ',. nhv ; ). with two-sided power n n
spectra. i ,, The problem we consider between the input to the decision device and te

In n a j,.r , t followings for a given corresponding tronmitted symbol. ius
"r-Iri ' - , .!.) of the random minimization of if provids a minimum rquaru

"rlt, I j1ven ti me t - t o nT, e rror receiver.

n -. - . .. •. 0

* '. .'.=. .J a '= - . " ,.. .. ,_=,,. ; .. - a,',.',JL, _t'" - - L J., .. . . " _ " .""F -" "" t - . * . - -



rm tiniz'rs:'iorl of theo receiver under this a: [i(n)]( )

mnmm muslaeorrcriterion for a linearUin tnad vrainl ccuuc hannelI and ul -r;>iemodulation receivedUsn stdad vrtial ccus
In u h t en *. r i t e ltersure (se, eg., techniques, it can be shown that a necessary and'uch or rtt cer.Or , t' iteum reevn ( fie, er. sfficien condition for U(f) to minimize f isMore r-eerty, ptium rceiingfilersthat it be solution of' the following integral

were considereji for nonlincar channels as well
2, ~ equation:

?'a t work WdsitB 'rt xva t d by digital satellite rP(f, f,) U ( f exp( - j 2r - f') t) d f
cormmnunica tion. r n which timpliiiera are used that n
nPerate at or near :j .tu rtiIo n for better N 0/2 U(f) - V(f) (2.6)
wifficlency. Fred Ico ' considered a quadrature hs fr e ae ntyt xlie uPSIK system, an,,, usud ain approximate model for theThs fr we av no ytexlidou
nonlinear amplifier. Mesiya, iVnLane and Campbell knowledge of the structure of X(f),' provided by

31 spac If iai rr optimum receiving filter for (2.1). Recalling that the sequence is)
b i nary ?5K stationary, we can define

This pa ne r isanB extension of the previous work R(f,f' ;n-m) - E[Q( f; d Q(f' W (2.7)
d ;ne in trio area. Our approach is general enough sota ffcnbewiennthfrmto encompass A rnumber of multilevel modulation a ht rff a ewitni h om3crieyem rnd any kind of noiseless nonlinear
c~iannels. Considvratior or coded symsbols is also r(f,f, ) R(f,fV ;n-m)exp(-j2;zgnf.mf - )T)..
possible, as -.ell a the addition of interfering lt EH.7 Iep-nfT ff-/)(28sig~nals other tnrir white noise. However, for make 0f .S f
of simplicity wt, shall not deal with these more
general ait, atiorrs here. In the following, we where the equality
k3r.qr~ 11 D *0Vi1 d a c orr. bI n ed analytical and ep-2 (-'T / (-'nT 29simrulation tt'chrrique to specify the optimum Zep-~~~f))-1T 6f.nT 29
r e %,vevvr filter. F'rom a theoretical point of
view, It is interesting to observe that this has been used. If we define the functions
optimum filter can be thought of an composed of a ff'-tkrr.k o f f iltears, matched to a set of n < M R~~~ ( f , V ; I) a xp(- j2ra fT) (2.10)
wraverorrrs that form a basis for Jq(t.1)JM. Inad

Cascade with n infinite-length transversal
:ilters. This iu a generalization of a result C n(f) - A(f,f-n/T) (2.11)which is well-crnoin in thv case of PAM modulationrff)ca be ewitn s

r(f,f,) I/T L Cnf 6(f-f'-n/r) (2.12)

THE r;LNERAL SO0.U7ICON 8 htteintegral equation (2.6) takes thefo in:
To formulate in I he frequency domain the

problem of minrimizing d8 in (1.5), let us denote / Gkf)U -/Tex(jit0/)
gith U(f) the transfer function of the receiving X1.1100
fil tar, and witt, X( f) tie Fourier transform of N 0/2 U(f) - f)(.3
trre signal x(t) dofined irk (1.1). We have

The theorem that follows provides, under certainX11f) - ~ ;' n ) erp(-j2jrfnr) (2.1) conditions, a closed-form solution of (2.13).

wntere ~(~)~ are tir Fourier transforms of Theorem. If the functions 11(f) and C (f) intt-e waveforms-1q(tI is Eq. (13)ca.b (2-13Y scaz be written in the form-,n
rewritten as folloe 3) can: b2

a.~uf~~ff~'ep>rf~t~ddfv(f) - Q t(f) 13(r) (2.14)

?q f f) U (f ) d f *N 012 f~ df (2.2)

wee A denotr,, ineaL pa r t the superscript 0denotes c0mPiwa, co0r!au'rte And the following where the superscript T denotes transpose, aoef~nitiona Jhakve treen usud& dagger denotes conjugate transpose, Q(f) is a
column N-vector whose components are the Fourierr ~ f~r ) - (2.3) tranaforma of the waveform. q(t;i), 141414. S(f)
isi a Column Nq-vector of frequency functionsV ex(--.Tx(~ (2.4) periodic with period l/T, and Y1(f ) is a M.MV~) xp~~-. K~ K(f1matrix of frequency functions periodic with

and period I/T, then (2.1)) admits the solution



I

-* U (2.16) whvue solution is now given by

re Fmf, s c. . -vector of frequency D C(f) - 0 
2.26)

r or equivalently.

0,.( )r(f) - :1(f) D D b(F) (2.27)

where D+ iS the M.1r o iitrix called the

. - (f-k;'Moore-Penrose pbeudoinveree of D. The theorem is

. " L' -' ' proved.

., 7 F,; -,, .' f()S'. (2.))

M Id This theorem shows that the optimum receiving
'.ere ) rOteb the ! dentity matriz, filter in our situation can be thou4irt of as

. '"' ,,,n he rewritten in the fori composed of a bank of filters with transfer

f - (2.0) functions Q0(f;i), each cascaded to an

infinite-lengh transversal filter. The filters

t tre t-.'or. periodic with period Q*(f;i) are matched to the waveforms observed at

n I tthe output of the memorylesa part of the channel,
,,Jefinel ,

.:') - :flt' r(f) - :'i
'  (2.19) dWhen the waveforms q( ; i) ar

r)r i, i rsJqt i) are not linearly

independent, we can substitute the bank of M

k/T)-) (fk!) Qt (f-k/T)+No!2J (2.20) filters IQ*(f;i)i with n filters, matched to

w - according to the

Equntion '..19) can be rewritten in explicit the basis functions a to the

t'rm in the time domain If c (t). iiM, dote

the inverse Fourier transforms of the components equation

3, the vector C(f, the periodicity of C(f') - W) o rr (2,2d).
!-'lies that c (t) have the following form: v

c $t) -~~ -6 -jPr) (.

COMPUTATION OF THE TRAHSFEI FUNCTION OF TiE
;ie:.:e, the tmur-domA,.fl version Of (2.le) is OPTIMUM FILTEH

, 1' '- From the results presented in the previous

Q 1 q t-3Ti)] " (2.22) section, it is seen that the transfer function

U(f) of the optimum receiving filter has the S

Thius. it the wuveforms q(t;i) are linearly general expression

e 2.2), cind hence (2.fb), can

f.1 r,' only if all the 9 are equal to U(f) " Qt(f) H''(f) DC 173(f) (3.1)

ti nis entail.s -(f)-O, i.e.. asousing that

i.s Tie., ass g where o(f) is obtained through (2.14), and H(f)
is defined by (2.20) in conjuction with (2.15).

r(r) - t-If) )(f) (2.23) This is valid, however, only if the conditions
(2.14) and (2.15) hold. In this section we shall

. (2.23) shows tat r(f) is periodic with show that, with the model assumed for the channel

eriod IT a it be. (see Vig.I) the hypotheses of the theorem hold
Assume now that te wpveforms in q(;i)"M true, and an algorithm will be provided to

o-4 compute the quantities involved in (3.1).

are not linenrly ,rdtpenent. In this situation, To do this, we observe that under our

et { Y/)(t;t~t , ,Jenote a set of linearly assumptions the discrete sequence () forms
an M-state fully regular homogeneous MarkovO

independent itsis functions for !q(t;i)l" . If chain. Let P denote the transition probability
' I. matrix of this chain, i.e.,

I tJ(';i~., C notes the set of Fourier
transfor-ms of these tasta functions, ad W(f) is (P) - - i, (P n-,)

the H-vector whose c,)mponer.tn are these Fourier

r ansaefosri, in noM mitrix b can he found such Hnd define
thot L( f) - P exp(-.l,:rwlfT) (5.5J) 'O

,,. (2. 2 4 ' n.j

And

. t h i s c ' e , , • i : ' r 5 5
A - i,(i ),a ,: . . . ) (3.4)

W D U'f (2.25)

0O



Then, it ci,% t, shotr. thjt the expression for the

optimumi f'.Cr1 *ti

-( :-ep) De D( f) A (-5.1)) ~* ' AIf -~ 11~"

dhu~ .. , ~ by (2f) ff) by
-~ ~ ~ r) .s the "M-vector whoseL ~~

As an *:'ieof application, consider binary F'ig.1 - odel of a discrote-input, continuos-output
P.;4 ;rn,.3:r vtr a nunlinear channel iti-eoy hnl
cz~ssting1 if .r. -order fhutterworth filter withfit-mor hne

3-dt3 bttnlwljtn .Qru/T cascaded to a nonlinear
ampifir %~'~~' xi biting both AM/AM and AM/PM

conversionI) rit:.
4 snows the transfer function of

tnle optimum filter for a channel with the
nonlinearity removed. Thu power spectra of the
receivwd vit:nal are also shown for comparison.
The performance of the optimum filter is shown in
Fi.5 For comparison'asaeke, the mean-square
error resul.tjng from a 2-pole Butterworth * 1
recelville t vr with optimum 3-d13 bandwidth is x t * Ct

eao sho)wn. 
,-n E

1 .~~r:e~ni A i 'ufts, "Optimum pulse Fie.','2 -Model of the receiver
arnI mdulation. Fart I:

.ra f mi n*. vr -r, :e v er design and bounds
fror.in Iormaj~ivn theory", IEEEb Trans. on
Infor'-. Theo ry , vol.IT-15, pp.196-206,
April I1jL7.

!; ~.A. Frucjicson, "Ortimum receiver filters in
dieiti,l qu"Jzature phase-shift-keyed
systems wi th a nonlinear repeater", IE
Trans. Oft Comiunicitions, vol.COM-23,
pp.15839-14O0, December 1975.

L1] MSF. Meaiyu, P.J. McIane and 0.) 0 0 -lL. Lorne Ciimpbell, "Optimal receiver
filters for BPSK transmission ove r a "i
bundlimited nonlinear channel", IEEE
Trans. on Communications, vol.COM-26,
pp.1

2
-2?2, Januaary 1978i.
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Fig.3 S tructure of the optimum receiving filter
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AENSIONAL MODULATION AND CODING FOR DIGITAL TRANSMISSION

and .EIa (1)

dimensions. Conventional quadrature
amplitude modulation (QAM) and

performance in digital data phase-shift keying (P3K) use the
-ation can be achieved, without in-phase and quadrature components of a
'ease neither in bandwidth nor carrier to build up a two-dimensional
S.y by adding a certain amount of (2D) signal space. Now, by choosing an
.ty in the transmission system. appropriate alphabet, the performarnce
s to do that are an increase in can be improved by going to
nens ionalzy of the signal higher-dimensional signal spaces.
Lation used for transmission, ortion of multilevel trellis Althotvjh our main concern here is
boeck") codvs. we consider here the discussion of specific designs, it
nation of Doth techniques. A appears also natural to investigate

)f multidimensional what performance improvement can
latlons, called "generalized theoretically be achieved when this
code " i! introduced, and it is dimensionality is increased. Using
ow an Ung,_rboeck code can be sphere-packing arguments, it was shown
d using one of those as an In (10 that for a signalling alphabet

whose elements have the same energy E,
the dimensionality n, the number of
signals M, and the minimum Euclidean
distance dj, in the signal space are
re-ated by the bound

M < 2 / Iq((n-1V2 ,1/2)ITNODUCTlON
where q:d j /4E, and Iq(x,y) is the

ital communication over radio incomplete beta-function.
., both available spectrum and
ter power are generally Similar results can be obtained by
I. Thus, to cope with the allowing the signals to have more than1creasing demand for digital one energy level. To do this, we
,cation services, more efficient assume that the energy spacing between
.3son techniques are called for, adjacent levels is equal to the minimum.he search for bandwidth and squared distance between signals, and
Ifficient modulation systems has apply the bound Just given to eacha very active research area. In energy level. This results in a set ofLt has oeer widely accepted that nonlinear equations (with as many
'd factor is relevant in the equations as energy levels), which can'f between b:indwidth and power, be solved numerically and whose results
13, tlue complexity of the are shown in Fig.O . In this figure,Lcatlon s ~sLem, in other words, the abscissa log, M/n represents the
additz i' amount of comj;.exity information rate in bits per dimension,)wed at 'ie trar'nmittLng and the arid the ordinate is labeled by a

.11g er i ,)e system, its parameter related to the error
iance cv - :e improved without performance of the signal set when used"ni ne' ',e! anwtdtn nor power. ton an additive white Gaussian noise 0

channel. More specifically, the error
po0si .e wjy to allocate the probability turns out to be a monotone
)nji 'exity 1s to use decreasing function of the product of
Lng a. ,b e t3 n higher Eb/Ne (the ratio between the average

energy per bit and the noise power
spectral density) and log, , where
6.'j. . /E. Thus, given two systemsIrtirnento d, Elettronica operating at the same average energy E

teCntco ji Torino (itmly) and information rate, the one having a
larger value of log2M will exhibit

•0
. ... .... . :.= + " _-. ._+ ... .._: - _"... ... .. .-. _. .: ::. c " " " " " " -



sm*~* a~ -,"e .t ,est z eeneralized jroup codes form j r
Cor r o r' 'tilW~J ch ne a rt exceeditigly large class o f ~3 p ha b e

5 1 r ' p-cpsd in 'I. and in fact most of the alpriabet' tiat
niave been proposed SO f i r for

rr:)7a ;3h ininvolved i n mult d i ,eni io n al1 i g n al.'4n g b)elong to
we n Z3 a~ Iy t ni Iss f amy. Ie c Ii ICu arcC5.1, Shown that

a ~ .s s~n ta'. s te allowmultid .rnensicnal-a Iphabet
,ri a~,r nerboeck c o Jes to,- Le lesigred ne

' 'energy ev elIs It:-e b as ed( c n a P sit i- >n o f the
r c-i Itm ln a b (,bt steirminrg from, 'cc parti tion of

)f' n a croup P n to 2os e ts .4a conventlent

gn aRd s mc can
sy 5 1 in two

em3 I wthl two

'v 5 ' o n ni o i pl e xed n GENERALIZED GOCUP CODES FL R THE
r 3 3pec ,fi 1 o esigns GAUS3IAN CHANNEL

a ~se., i can be fo un d
! '-r txaiaple that., Consider a set of K n-vectors x

Tr ! ,i-le :, sinal power x k') and a set of' n x n ort'hogonal
a,:h ie Ye a bit i;1ak.r e s S l.. Sk, that. form a
iabout 1.? dB fi1nite group G under matrix

.1tn rZQ) inulti plication Thle 5et of vectors

I as recently .. , p K
-- m bha eenK

i a att en tion. It
a corm bine d

h'' oa' 't 8 I n is3 call e d a "general zed gr-o u p c od e
or 0! cr-Control (C1')if the action of Lte mnatrix group
eafld j t o the G on the "initial set' o f vectors is

7iequence, with the -such that each of them I transformed
a h e r rate , - nt'o an equal number of distinct

o oq1 rger ,,andwidth . vectors. The special case K=1 has been
of co to! ng can st'udied in [9) , and gives rise to a

e 'we r -equirement cla s s of alphabets called "group codes
-1 1ac a given for the Gaussian channel". Notice that

! -at Lh,-s gain in the number of distinct vectors In a GC
- -' -,-ferreo to as the may be less than KL (Out is always a3r)ens.ate for the malIt 1pl e of K), and these vectors may

r, Or wo r .', rot 3pan the Eu c Iid e ac n - d imen s Io nalI
'se- ma npexity sae

I: tf n" V for
c'y W ith If )( denote5 the Euclidean~o I, the e ng th o f a ve ct or x, he quan t ity I x12 i s

efcer hecause p c Por tonalI to the energy of thle
AcdIn- sgal asoIe with x.0

3 3 c ,3 g th e
-3.d Of n As orthogonal matrices transform a

'v- r i nto a nothe r bayi ,n g the sarme
J a ~~h a CL6C 1as as ;nvty energy levels

DC ') a n'ed at he re are :r the " ni tial set" x
X1, In. n r the special case Kz I

l he code v ec t,)r o have the same
o'ier a 1 h ,

ifIdea Let now R denote the max imum
ikelihood (ti) r'egion associated with

A. I,%~ f ~'~code ven~to r x(A I e. the set o f
(as 3 -J Ln ts Inr t he Eucl 0e an n -s1pace a t

are )s3n close to X as' to any other~t antvee 'ctor . 1hen. for a GG(L every ML
w o '''on is congruent to one among R)talod on a K I ) ctie r' word.1, the ML'Tte3e on ~'ns can ,a v e no0 mor e than K

-. *~ cgre . -rent 5harces Consequen- I y , Ifr as.-~ m bs~ rece4ver" 1,, Uqsd !jC1 l~i enntes
goo) eP.r r-,r p rb %4 ht abe 1 ''

' ' ' 0 ~ I r n e t ~ - s m ' t e t i~ c a r ' b a w e n o i o - ' t h a n
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;een that a sufficient condition is8 C2 =0 ,or (/1 0. The first condition is equivalent

.state thsqt for all the enc-oder states the syinbols available to the e7)coder have zero

11can. For equally likely source s1ymbols, this conidition reduces to the requirement that

ill the columins of the table displaying the values of the function h( , -) have a zero

irithmetic mean. The second condition Is equivalent to state that, for each encoder

,tate, the average of the symbols forcing the encoder to that state have zero mean.

Consider then the line spectrum (2.19). A sufficient condition for it to be zero is

hat A 0, i.e., the average of the symboLs at the encoder output be zero. From (2.14)

ve see that if C2 =0 then /A = 0, SO thlat if C 2 = 0 encoding does not alter at all the

lower spectrumn of t-he line signal.

Let us r ow re-str-t our at~ent icn to th-c !!,perboeck code described in

*1. it i2.5 £&SLly s;-en that "f the source symbols are euually likely we

e for this code =0. more generally, the condition C 0= is satisfied by

t Ungerboeck cod(-.; designed so far, at least when the source symbols are

aliy iikelv. Ths i3 due toc the highly symmetrical stru,-"uire exhibited

guo (D-

die



ally~the fourth quantity of interest is the mean-square value of the encoded

CO E S S qkPL Ih(k, SI)12

k-OUJ (2.15

q, U ) U',
k-0

he asterisk denotes conjugate.

are DOW in a position to express the power spectrum of the modulated signal

1.31. We have

=.f *9(g'(f) + g~d) (.~

94() the continuous part, is given by

(CO - + _' [0*1(I P-)B(f)C' 1 (2.17)

ithe Fourier transform of thc. waveform q(t) available to the

duia'.cr, X denotes real Part, don,',es the N x N identity matrix, and

13(f) -e'"
7  2(P e-~~?rn

ra-0

-rj2srfT 1  P--(.8

e discrete part of the power spectrum (l1ine spectrum) is given by

_ _ E 6 (f - n 117). (2.19)
T2 S

-ictlis1ons

ire now in a position to state simple sufficient c,,iiditioris that a code must

for its, sp, *runm to be equal to a scalar rmultiple of tCf.Fromn (2.18) it can be

8Z



exists under our assumptions, and has all its rows equal to the probability vector p.

Let us now evaluate four quantities which play an important role in the discussions

thAt f Tlw. The first among them is the average value of Uk taken over the source

C2 - L ' Otk. (2.10)
k-0

[lhe 1--th component of C 2 turns out to he the average of the symbols available to the

0,1ucoder when it is in state S i .

The second quantity to be defined is the N-vector C1 whose "-th component is

the average of the coded symbols that, when output by the encoder, force it to the state

8) This j-th component of C1 is then given by (see [ 3) for details):

L-1 N
[C1 , = q; pt [Ek It, h(k, St) (2.11)

k-0 t-fl

(Nr,1all that (Ek j,,j 1 only if the source symbol k takes the encoder from state St to

rta, te .j). If we define the N X N diagonal matrix

D - diag (p I2 PN) (2.12)

we have from (2.11)
b--i

C, E qkUkDEk. (2.13)
k-0

Our third rpiantity is the average symbol at tbi, output of the encoder. We have

I-o -i i

L-!

-PC/2

7
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=, (w0 6w 7 W 4 W ) (2.2 d)

Se-/ (2.3)

)eaoting by qk, k 0.1, . L- 1, the probabilities of the source symiibols, i.e.,

qk P{ a k, k = 0, 1,...,L-1, (2.4)

tate sequence (a,() is a homogeneous Markov chain with transition probability

ix
L-1..

P - qk Ek (2.5)

e

1 P Ucr 1  a, u (2-8)

[31 for a proof). We assume that the cbair is fully regular (see r4I for the relevance

kiS assumption ;n the computation of power spectra ). The matrix P provides all

mormations we need about the statistics of the sequence of the encoder states. In

icular, the stationary state probabilities

; f or" S ,, (2.7)

he elements of the row N--vector p obtained as the solution of the equation

p -pP (2.8)

N

ect to th*e cOfI(IAOfn , p, 1. The limiting transit-l,,! probability matrix

P _ lirn P" (29)
nl -- o0

B 0J

-. . :• - . * -. , . . - . - I-.*- ",-. . -. .



For our computitiois, the 1'Alowiug qua ntities are to be defilled;

The state transition matrices E;k, k 0, 1,.., L- 1, which are the N X Al matrices

whose entry [Ekl,,, is CtLqua1 to I If q(k, S,.) S,, and zero elsewhere.

The row v,,iors UJk, k ii 1,., 1- 1, whose N entries aro tim coch d symbols

according to the rule [Uk1, -- h(k, S,).

In words, the matrix Ek hVLs a I ii row t nd column ) if the source symbol k forces

a transition of the encoder from state Si to state SY, and a zero elsewhere. The vector

Uk includes the coded symbols corresponding to the source symbol k, for different states

of the encoder. For tho exam p!e of Fig. 1, we hitye

F1 0001

00 10
E0  (2.1a) -

1000.

r00 1 0 1
r-() 1 0

E -- E 3  (2.1b)
,0 100

0O 0 0 1
and

Uo 0 1w' w 2 w 3 ) (2.2a)

IJ, (w Wz ( w5  w? 7) (2.2b).

(U,2~ ~~ ~ V)7) ) 2
" - -. .- . : : . ( . i: .: , i:- : -i. : . ,.: . -'. : - ' ." -> "-.. .,_- ,-. .0



the modulator, the modulated signal can be written in the form

00

x~) u,, q(t - nT) (1.3)
n1- - 0

We want to comnpare the power spectrum 9n f of the signal .r(t) with the power

ectrum ~~~~~9.(f) of the signal .s(t) which would resul fhesrc ybo weno

linear
ricoded, but sent directly to a ]Mmodulator. Simple sufficient conditions will be

)und showing that a properly designed Ungerboeck code does not alter the power

pectrum of the line signal. This provides a formal proof of the often-claimed fact that

Ingerboeck codes 'do not expand the bandwidth".

~The power spectrum of the coded signal

In this section we shall present the power spectrum of the signal z(t) defined in

1.3). As the computation can be done by using results obtained by Cariolaro et al.

3), we shall not repeat their derivation here, and focus instead on the meaning of the

iuantities involved.

To describe the encoder operation, we need to specify the functions h(.,.-) and g..

:) (1.1) and (1.2). This will be given in tabular form, by providing two tables -whose rows

are labeled according to the values taken on by the source symbols an,(say, 0, 1,-., L- 1) -

and whose columrns are lablcd ac cording to the valucs taken on b-7 the states a, sy

S1, S2 ,- . SN). In the first table we display the values of h(a,,, a,,), and in the second

the values of g(a,an ,). As an example, Fig.1 provides the two tables needed to describe

the 4-state Ungerboeck code of [1,Fig.7j.

4 
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1. Statement of the problem and motivation of the work

In this paper we consider the power spectrum of the digital signal resulting after

chianulel codiiv, :111l fit ,1ltih'-vcl/ phase modulation. The family of codes considered are

those introduced bY Ungcrboeck (1,1. Our alim is to find simple surLfcient conditions for

the resulting spectrum to be equal to the spectrum of an uncoded signal.

The encoder is modeled as in [2J. A finite-state sequential machine with N states

is driven by a stationary sequence (a,) -___ of Independent source symbols taking on

values 0, 1),.. L - 1, and emitted every T seconds. If denotes the sequence

of states of the sequential machine, and (u,) - the sequence of coded symbols, the

behavior of the encoder is described by the equations

fln h (a'l O'n

and

Un+1 9(aa.) 1.2

Eq. (1.1) describes how the encoded symbol u,, depends on the source symbol a,,

and on the actual state a,, of the encoder. Eq. (1.2) tells in 'which state the sequential

machine is forced to move at time instant (n + 1)T when it was in state cy, at time nT

and the source symrbol a, is fed to the encoder.

ai linear
The coded sc~iuviice (u,) is then sent into Mmodulator. This can be seen as a

mapping of the symnbols u, into waveforms which are output s-equentially. If the coded

symbols take on va!ucs in the set {O, 1,... M -1} and q(t) Is the w-aveforrn available

3
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t0 1 9 13
0 0 0 0

J 3 8 4
0 010

S. - -- - - - - Fig.2 - A 2-state trellis11 15 12 116

0 0 0 0

I| -~as GC

A B C D

a a a a 0 a a 0 a a C a a a
0 -a a a - 3 a-a 0 a a 0 -a -a 0 -a a
a 0 -a a j -a -a a -a a a 0 -a a 0 -a
a -a 0 -a -a 0 a a 0 -a a -2 a a -a 0
-a -a -a 0 -a -a 0 -a -a 0 -a -a 0 -a -a -a
0 a-a-a a-a a 0 -a-a 0 a a 0 a-a

-a C -a a 0 a a -a a -a -a 0 a -a 0 a
-a a 0 a a 0-a -a 0 a -a a -a -a a 0

Fig.3- Fu:.r vartition of a 4D alphabet with M-32

An 8-state trellis
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K different valu e, and the average pair of nodes a subset of symbol s

error proDailtY is g4 ven by obtained from a fair parti tion of the

alphabet In fact, all the designs of

K Ungerboeck codes known to the ,jtncrs

4 ~ Z P(elxi) exhibit this kind of symmetry, ai,.gh

Pr No systematic procedure, to achieve it

has been proposed before

S Fg. 1 shows a familiar example of

a signal alphabet (the conventional

6-QAM) being a 0 C, It has parameters

, i s ,1 t r 2 . Po in t s I 2 , 3, denote

cr.e four ec r 5 tn the ,.nit al set.

"re matrLcos gen,- atng the code are 4 .0 SOME EXAMPLES

'.:use aasu .tared to plane rotations by

-1utiples of qC . There are three We shall now describe in some details

S : I. ferent :'.ergy evels, and three two examples of designs of

.~fferent sn: ape5 of ML regions (their four-dimensional Ungerboeck codes. No

toundarteS are .ahown in Fig.1). attempt at optimizing the designs has

cons der : o' the 3et of M vectors in a been undertaken yet, so these examples

G3C, and a partition of it into m should be taken as an illustration of

dis 3 oint zub5ets Xj , .. . X,,. For the concepts presented before and not

each subset. Xf, we can define the as a list of good 4D codes.

"intradtsta',ice set" as the set of all

n, e dtitances among pairs of vectors in The first example originates from

Xe . we soy that a partition of a GGC a group code, obtained by permuting the

Is Ifalr'" if all the subsets Xe include components, and replacing them with

O toe sa m e number of vectors, and their their negatives, in the initial vector S
:traJstance :ets are equal. (a,a,a,O) , a=l 1/T -, This alphabet

includes 32 vectors. The 2-state

A uay to generate a fair partition trellis of Fig.2 can be used to design

f a CO is the Collowing. Partition an Ungerboeck code with rate 4/5, and

ratr-x group G into the cosets of a hence transmit 4 bits per alphabet

s.tgrCup H, and apply each coset to the symbol.

' .ai set Cf vectors. It can be

i r . ?n ta t the re5ulting partition of Fig.3 shows a fair partition of

e CCC is fair For example, by the alphabet -n four subsets of 8

r t ionIng the rotat ion group used vectors each. This partition is

r the C of FIg. - into the two outained as follows: denote by Ct the

- set asoci ited to the rotations 0*, or iogonal matrix whose effect on a

" a : r e 0 respectively, the code vector is to cyclically shift its

ra f y p rr.'toned into the two components to the right by one

- ,, ,9,10,11,12} and position, and to change sign to the

13, 16) . second component. Then the set

H o(*, 01', ax, a', a', a', a , c)'

2 'LTD1HENSONAL UNERBOECK CODES is a cyclic subgroup of the group G

generating the alphabet, and its cosetsO|

',- -:all now see how an Ungerboeck code generate the fair partition of Fig.3.
be deigred using a By associating th, first node of the

-.'tidmenslonal alphabet generated as trellis the subcodes A and B, and to

ectior. 2. For simplicity, we shall the second node the subcodes C and D,

ret rrct our attention to codes with the free distance of this code is

rste n/(mfl . mzlog,M. Such codes can
e specified by giving an N-state

trellis, wit ,  m branches stemming from d, - 4a' 1.33 0

every nud,. ard H branches reaching
every -n e. The branche . are
associate. to t ne elements of an
alphabet .t'- 2M elements (see [6] for If this figure is compared to the

r. ru re det Il I > Although no formal inlmum di:stance ach ieved by

,. r f h bern found yet, for a ood transmitting the same amunt of

code L 1 s conjectured that the information over the same number of

a n Rtprrent of symbols to the branches dimensions using two inde-ndent 4-PSK

erQt.d ehib t a regular and signals, we see that an nergy saving

syn' e'c-2 s tructure. This in turn of 1.24 dB s ootained.
can be ,b'.ained oy assigning to each
.ode ard t-, ire ,arche3 connecting any Consider now a generalized group

. - "S

m S
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